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The truncated Schröter recursive algorithm for the computation  
of aggregate claim amounts 

Friday I. Agu1  

Abstract 

This study introduces and evaluates the truncated Schröter recursive algorithm for computing 
aggregate claim amounts in the insurance sector. The algorithm addresses the limitations in 
the existing methods by incorporating truncation at 1, which is crucial for an accurate 
modelling of insurance claims where the events leading to a claim are pivotal. Using the 
AutoCollision dataset, the study compares the truncated Schröter algorithm with the Panjer 
and Schröter recursion algorithms, focusing on computational efficiency and accuracy. 
Furthermore, the descriptive statistics revealed substantial variability and risk factors, such as 
higher claim severity for business-use vehicles and young drivers aged 17–20. The results 
demonstrate that the truncated Schröter algorithm substantially reduces the execution time 
while maintaining high accuracy, thus making it a superior tool for risk management and 
premium setting. 

Key words: insurance claim amounts, aggregate claim distribution, recursive algorithm, 
insurance risk management, computational efficiency. 

1.  Introduction 

In the insurance domain, company profits depend largely on the premiums 
collected from policyholders and the claim amounts paid to insured individuals. Unlike 
in other market sectors, such as manufacturing, determining the appropriate premium 
for an insurance portfolio is particularly challenging. This complexity arises from the 
need to account for future uncertainties and ensure sustained and adequate investment. 
To address this, insurance companies employ models designed to accurately compute 
aggregate claim amounts within a collective risk framework and estimate the 
probability that total claims will not exceed a specified threshold. The process begins 
with an estimation of expected costs to establish a baseline premium. This is then 
adjusted by adding margins that account for uncertainties, provide a profit buffer, and 
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reflect potential aggregate claims payable to policyholders (Yartey, 2020). Central to 
this approach is the distribution of aggregate claim amounts, which is derived from the 
convolution of claim frequencies and severities. This distribution plays a crucial role in 
pricing insurance portfolios as it informs the likelihood and magnitude of potential 
losses. Accurate estimation of aggregate claim amounts is therefore critical for 
insurance companies as it supports informed decisions about pricing competitiveness, 
risk margins, and capital allocation. However, a persistent challenge in actuarial 
mathematics lies in modeling this distribution when discrete, non-negative integer 
values represent the number of claims and the severity of claims. Accurately capturing 
this behavior is essential for reliable risk assessment and premium setting. 

1.2.  Literature review 

Historically, before the advent of modern computing, actuaries relied primarily on 
estimation and approximation techniques that lacked a rigorous theoretical foundation 
for determining aggregate claim amounts. These methods were limited in accuracy and 
reliability, making data-driven decision-making in insurance challenging. A widely 
adopted approach for analyzing the distribution of aggregate claim amounts involves 
identifying suitable counting distributions defined over the non-negative integers and 
fitting them separately to the number of claims and claim severities. However, while 
claim frequencies are inherently discrete, claim severities are typically modeled as 
continuous random variables and are thus best represented by continuous 
distributions. Numerous studies, such as those by Hogg and Stuart (2009), Gray and 
Pitts (2012), Packová and Brebera (2015), Pacáková and Gogola (2013), Jindrová and 
Pacáková (2016), and Dzidzornu and Minkah (2021), have examined various methods 
for fitting distributions to insurance claim datasets. Despite their widespread use, these 
approaches can be unreliable as they often fail to accurately capture the convolution 
between the number of claims and claim severity, two central components of the 
aggregate claim distribution. This convolution forms the basis of the aggregate claims 
model and has been applied extensively in actuarial science to solve various insurance-
related problems (Albrecher et al., 2017; Klugman et al., 2019; Mildenhall & Major, 
2022). However, computing this convolution presents substantial challenges, primarily 
due to the absence of a closed-form expression and the associated computational 
complexity. 

To address these issues, alternative computational strategies have been developed, 
such as the normal power approximation and fast Fourier transform (FFT) techniques 
(Beard et al., 1977; Cooley & Tukey, 1965; Heckman & Meyers, 1983; Mildenhall, 2024). 
Although these methods enhance theoretical understanding, they often become com-
putationally intensive and less accurate when applied to large datasets with high claim 
frequencies and severities. These limitations have motivated the search for more effi-
cient and robust approaches. One such approach is the recursive method, often referred 
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to as the "exact method". Unlike convolution-based techniques, the recursive approach 
assumes that the number of claims and claim severity distributions are discrete, ena-
bling the computation of aggregate claim amounts through recursive formulas. This 
method substantially reduces computational burden while maintaining accuracy, par-
ticularly in scenarios involving a large number of claims. A foundational contribution 
in this area was made by Panjer (1981), who introduced the Panjer recursive family of 
discrete distributions and the corresponding recursion formula for computing aggre-
gate claim amounts. The Panjer recursive formula has spurred extensive research in 
actuarial science, with notable contributions from Sundt and Vernic (2009), Yartey 
(2020), Dickson (2016), and Ghinawan et al. (2021). More recently, Tzaninis and 
Bozikas (2024) extended the Panjer family of claim number distributions by treating 
the family’s parameters as random variables, thereby deriving a more flexible com-
pound distribution. Their formulation assumes that claim sizes are conditionally inde-
pendent and identically distributed, as well as conditionally independent of the number 
of claims. In a related development, Fackler (2023) introduced a reparameterization of 
the Panjer family, enhancing its modeling flexibility. 

Although the Panjer recursion effectively models aggregate claim amounts, its ap-
plicability is confined to a narrow class of counting distributions that have a fixed, pos-
itive probability at zero. To address this constraint, Schröter (1990) proposed the 
Schröter recursive formula, which accommodates a broader range of counting distri-
butions and more accurately captures the dynamics of aggregate claims. However, this 
method relies on convolution operations, making it computationally demanding, espe-
cially when dealing with high claim frequencies and large claim amounts. Recent ad-
vances in computational modeling have substantially broadened the methodologies 
available for estimating aggregate claim amounts, supplementing—and in some cases 
outperforming—traditional actuarial approaches. For instance, Qiu (2019) compared 
classical reserving methods, such as the Chain Ladder and Bornhuetter-Ferguson tech-
niques, with machine learning-based individual claims reserving. The study found that 
models like generalized linear models, artificial neural networks, random forests, and 
support vector machines delivered superior performance on simulated datasets rich in 
claim-level features. However, these advantages diminished when applied to smaller, 
real-world datasets. Likewise, Hofmann (2022) proposed fast Fourier transform (FFT)-
based algorithms as a computationally efficient alternative to the Panjer recursion un-
der arbitrary claim frequency distributions, incorporating exponential tilting to reduce 
wrap-around effects and better capture distribution tails. Additionally, Gamaleldin 
et al. (2025) introduced a hybrid CNN-LSTM model that captures both spatial and tem-
poral patterns in insurance claims data, considerably improving volatility forecasting 
and enabling proactive risk management. While these studies underscore the growing 
influence of machine learning in enhancing the precision, scalability, and adaptability 
of aggregate claims modeling, they also highlight a key trade-off: improved predictive 
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performance often comes at the cost of increased computational complexity and re-
source demands during implementation and model tuning. 

The computation of aggregate claim amounts plays an increasingly pivotal role  
in risk management and the pricing of insurance coverage. Insurance companies are 
inherently motivated to minimize claim payouts while maximizing premium income, 
thereby strengthening their ability to manage future uncertainties and withstand cata-
strophic losses. Within this highly competitive landscape, insurers face the added chal-
lenge of dealing with the unpredictable nature of claim occurrences embedded in in-
surance contracts. 

Despite the utility of the Schröter recursive formula, it does not fully capture the 
dynamics of claim amounts truncated at one. This practice holds significant practical 
relevance in real-world insurance settings. In many cases, insurers are primarily con-
cerned with the number of events that generate claims, rather than the exact amounts. 
Once a claim is reported, the minimum observed claim amount is often truncated at 
one, effectively implying a zero probability for a claim amount of zero. This reflects 
typical policy structures that include deductibles, where insured individuals are respon-
sible for losses below a certain threshold, and only the excess is reimbursed. Conse-
quently, minor losses below the deductible are frequently unreported, making one the 
effective lower bound for observed claim amounts. This truncation has a substantial 
impact on the modeling of risk exposure, influencing both the accuracy of risk assess-
ment and the determination of premium rates. In risk theory, truncated distributions 
are essential for modeling claim severities and inter-arrival times, providing insurers 
and actuaries with critical tools to better understand the frequency and magnitude of 
losses. As such, accurately modeling the number of claims truncated at one is vital for 
capturing the true nature of insurance liabilities. It requires careful consideration of the 
underlying distributions that govern both claim frequency and severity, ultimately sup-
porting more precise pricing and effective risk management. To address this gap, the 
present study introduces and explores the truncated Schröter recursive formula—a 
mathematical framework designed to improve accuracy in the computation of aggre-
gate claim amounts. The study further assesses the computational efficiency of the pro-
posed algorithm by analyzing its runtime performance, offering insights into its prac-
tical applicability for large-scale insurance datasets. 

2. The recursive formulas 

2.1. The Panjer recursive formula 

The Panjer (1981) recursive formula is defined as 
𝑃𝑃𝑘𝑘 = �𝑎𝑎 + 𝑏𝑏

𝑘𝑘
� 𝑃𝑃𝑘𝑘−1,  𝑘𝑘 = 1,2,3, . ..        (1) 

where 𝑎𝑎 and 𝑏𝑏are parameters, 𝑃𝑃𝑘𝑘 denotes the recurrent probability, 𝑃𝑃𝑘𝑘−1is the 
backward recurrent probability, and by definition, 𝑃𝑃𝑘𝑘 = 0 for 𝑘𝑘 < 0. The counting 
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distributions that satisfied (1) were explored in Panjer (1981). Furthermore, Panjer 
(1981) obtained the corresponding recursion algorithm for (1) defined as: 

𝑔𝑔(𝑠𝑠) = 1
1−𝑎𝑎𝑓𝑓0

∑ �𝑎𝑎 + 𝑏𝑏𝑏𝑏
𝑠𝑠
�𝑠𝑠

𝑖𝑖=1 𝑓𝑓𝑖𝑖𝑔𝑔(𝑠𝑠 − 𝑖𝑖),       (2) 

and by definition, 𝑓𝑓0 = 𝑃𝑃(𝑋𝑋 = 0) = 0and𝑔𝑔(0) = 𝑝𝑝0, where𝑝𝑝0denotes the probability 
mass function of the counting distribution evaluated at zero—that is, the initial 
probability. For instance, if𝑝𝑝𝑛𝑛is the Poisson distribution function from the recursive 
family defined in (1), then 𝑝𝑝𝑛𝑛evaluated at zero (𝑝𝑝0) and one (𝑝𝑝1) represents the initial 
probabilities of no claim and the probability of a claim, respectively. 

2.2. The Schröter recursive formula 

While the Panjer recursive formula addresses the challenges of the traditional 
convolution method, it is limited to a few distributions. Hence, Schröter (1990) 
generalized (1) and obtained the recursive formula expressed as: 

𝑃𝑃𝑘𝑘 = �𝑎𝑎 + 𝑏𝑏
𝑘𝑘
�𝑃𝑃𝑘𝑘−1 + 𝑐𝑐

𝑘𝑘
𝑃𝑃𝑘𝑘−2,  𝑘𝑘 = 1,2,3, . . .,      (3) 

where a, b, and c are parameters, 𝑃𝑃𝑘𝑘−1 and 𝑃𝑃𝑘𝑘−2 are recursive backward probabilities, 
and 𝑃𝑃𝑘𝑘 = 0 for 𝑘𝑘 < 0 (by definition). Note that for 𝑐𝑐 = 0, (1) becomes a particular case 
of (3). Additionally, the counting distributions defined by (3) also contain the 
convolutions of the Poisson distribution and another distribution from (1) (see 
Schröter, 1990). Furthermore, Schröter (1990) obtained the corresponding recursion 
algorithm for (3) defined as: 

𝑔𝑔(𝑠𝑠) = 1
1−𝑎𝑎𝑓𝑓0

∑ ��𝑎𝑎 + 𝑏𝑏𝑏𝑏
𝑠𝑠
� 𝑓𝑓𝑖𝑖 + 𝑐𝑐𝑐𝑐

2𝑠𝑠
𝑓𝑓𝑖𝑖2∗�𝑠𝑠

𝑖𝑖=1 𝑔𝑔(𝑠𝑠 − 𝑖𝑖),      (4) 

where 𝑓𝑓𝑖𝑖2∗has to be evaluated by the convolution formula 𝑓𝑓𝑖𝑖2∗ = ∑ 𝑓𝑓𝑗𝑗𝑓𝑓𝑖𝑖−𝑗𝑗𝑖𝑖
𝑗𝑗=0 and for 𝑐𝑐 =

0, (4) becomes (2). The parameter estimation of (3) has been studied in Agu, Mačutek, 
and Szűcs (2023).  

3. The truncated Schröter recursive formula 

In this section, we present the truncated Schröter recursive formula. We defined 
the truncated Schröter recursive formula as: 

 𝑃𝑃𝑘𝑘 = �𝑎𝑎 + 𝑏𝑏
𝑘𝑘
�𝑃𝑃𝑘𝑘−1 + 𝑐𝑐

𝑘𝑘
𝑃𝑃𝑘𝑘−2,  𝑘𝑘 = 2,3,4, . . .,     (5) 

where the parameters are defined as in (3) and note that (5) is truncated at 1. 

First, let 𝐾𝐾be a discrete random variable taking non-negative integer values as 
defined in (5) and using the fact that the probability generating function is defined as: 

𝐺𝐺(𝑠𝑠) = �𝑠𝑠𝑘𝑘𝑃𝑃𝑘𝑘,
∞

𝑘𝑘=0
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where 𝑠𝑠 ∈ [0,1]such that 𝐺𝐺(𝑠𝑠) ≥ 0and 𝑃𝑃𝑘𝑘is the recursive probability defined in (5) 
and ∑𝑃𝑃𝑘𝑘 = 1. Thus, the probability generating function corresponding to (5) is: 

𝐺𝐺(𝑠𝑠) = 𝑒𝑒−
𝑐𝑐(𝑠𝑠−1)

𝑎𝑎 � 1−𝑎𝑎
1−𝑎𝑎𝑎𝑎

�
𝑎𝑎(𝑎𝑎+𝑏𝑏)+𝑐𝑐

𝑎𝑎2 ,         (6) 
for |𝑎𝑎𝑎𝑎| ≠ 1. 

The derived truncated probability mass function corresponding to (5) is given as: 

𝑞𝑞𝑛𝑛 =
𝑒𝑒
𝑐𝑐
𝑎𝑎(1−𝑎𝑎)

𝑎𝑎(𝑎𝑎+𝑏𝑏)+𝑐𝑐
𝑎𝑎2 ∑ �

𝑎𝑎(𝑎𝑎+𝑏𝑏)+𝑐𝑐
𝑎𝑎2 +𝑖𝑖−1

𝑖𝑖
�
�−𝑐𝑐𝑎𝑎�

𝑛𝑛−𝑖𝑖
𝑎𝑎𝑖𝑖

(𝑛𝑛−𝑖𝑖)!
𝑛𝑛
𝑖𝑖=0

1−𝑒𝑒
𝑐𝑐
𝑎𝑎(1−𝑎𝑎)

𝑎𝑎(𝑎𝑎+𝑏𝑏)+𝑐𝑐
𝑎𝑎2

,  𝑛𝑛 = 1,2, . . . ,  0 < 𝑎𝑎 < 1,  𝑏𝑏, 𝑐𝑐 ∈ ℝ.

 (7) 
Let 𝑟𝑟 = 𝑎𝑎(𝑎𝑎+𝑏𝑏)+𝑐𝑐

𝑎𝑎2
, 𝑥𝑥 = 𝑐𝑐

𝑎𝑎
, and define the generating function for the negative 

binomial coefficient as: 

��𝑟𝑟 + 𝑘𝑘 − 1
𝑘𝑘 �

∞

𝑘𝑘=0

𝑧𝑧𝑘𝑘 = (1 − 𝑧𝑧)−𝑟𝑟 , |𝑧𝑧| < 1. 

The goal is to express the finite sum in a form that leverages the generating function. 

To relate ∑ �𝑟𝑟 + 𝑖𝑖 − 1
𝑖𝑖 � (−𝑥𝑥)𝑛𝑛−𝑖𝑖𝑎𝑎𝑖𝑖

(𝑛𝑛−𝑖𝑖)!
𝑛𝑛
𝑖𝑖=0  to the generating function for the negative 

binomial coefficient above, we differentiate (1 − 𝑧𝑧)−𝑟𝑟with respect to 𝑧𝑧evaluated at 𝑧𝑧 =
𝑥𝑥 − 𝑎𝑎 (0 < 𝑎𝑎 < 1) to obtain terms that match the structure of our sum. We have that  

��𝑟𝑟 + 𝑖𝑖 − 1
𝑖𝑖 �

(−𝑥𝑥)𝑛𝑛−𝑖𝑖𝑎𝑎𝑖𝑖

(𝑛𝑛 − 𝑖𝑖)!

𝑛𝑛

𝑖𝑖=0

=
𝛤𝛤(𝑟𝑟 + 𝑛𝑛)
𝑛𝑛!𝛤𝛤(𝑟𝑟) �

𝑎𝑎
𝑎𝑎 − 𝑐𝑐 + 𝑎𝑎2�

(𝑟𝑟+𝑛𝑛)
. 

Hence, (7) can be expressed as 

𝑞𝑞𝑛𝑛 =
𝑒𝑒
𝑐𝑐
𝑎𝑎(1− 𝑎𝑎)𝑟𝑟 𝛤𝛤(𝑟𝑟+𝑛𝑛)

𝑛𝑛!𝛤𝛤(𝑟𝑟) �
𝑎𝑎

𝑎𝑎−𝑐𝑐+𝑎𝑎2
�

(𝑟𝑟+𝑛𝑛)

1 − 𝑒𝑒
𝑐𝑐
𝑎𝑎(1− 𝑎𝑎)𝑟𝑟

,  𝑛𝑛 = 1,2, . . . ,  0 < 𝑎𝑎 < 1,  𝑏𝑏 ≥ 0, 𝑐𝑐 ∈ ℝ. 

Also, the log-likelihood function corresponding to (7) can be simplified as: 
ℓ(𝑎𝑎, 𝑏𝑏, 𝑐𝑐|𝑛𝑛1, . . . ,𝑛𝑛𝑘𝑘)

= 𝑘𝑘 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑒𝑒
𝑐𝑐
𝑎𝑎(1− 𝑎𝑎)𝑟𝑟� + �𝑙𝑙𝑙𝑙𝑙𝑙 �

𝛤𝛤(𝑟𝑟 + 𝑛𝑛)
𝑛𝑛!𝛤𝛤(𝑟𝑟) �

𝑎𝑎
𝑎𝑎 − 𝑐𝑐 + 𝑎𝑎2�

(𝑟𝑟+𝑛𝑛)
�

𝑘𝑘

𝑗𝑗=1

− 𝑘𝑘 𝑙𝑙𝑙𝑙𝑙𝑙 �1 − 𝑒𝑒
𝑐𝑐
𝑎𝑎(1− 𝑎𝑎)𝑟𝑟�. 

3.1. The truncated Schröter algorithm 

Let 𝑋𝑋1,𝑋𝑋2, . . . ,𝑋𝑋𝑛𝑛 be independent and identically distributed claim severities over 
the non-negative integers with probability density 𝑓𝑓𝑘𝑘 = 𝑝𝑝(𝑋𝑋𝑖𝑖 = 𝑘𝑘) for 𝑖𝑖 =
1,2, . . . ,𝑛𝑛, 𝑘𝑘 = 0,1,2, . . ., and 𝑓𝑓𝑘𝑘∗ = 𝑃𝑃(𝑋𝑋1 + 𝑋𝑋2+. . . +𝑋𝑋𝑛𝑛 = 𝑘𝑘) denotes the n-fold 
convolution of 𝑓𝑓𝑘𝑘 . Additionally, let 𝑁𝑁be a discrete random variable representing the 
number of claims with a discrete probability mass function defined as 𝑝𝑝𝑛𝑛 = 𝑃𝑃(𝑁𝑁 = 𝑛𝑛), 
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such that𝑋𝑋𝑖𝑖are stochastically independent of 𝑁𝑁, and 𝑆𝑆 = ∑ 𝑋𝑋𝑖𝑖𝑁𝑁
𝑖𝑖=1  is the aggregate claim. 

While the truncated Schröter algorithm is derived under the classical assumption that 
claim frequency and severity are stochastically independent, it is important to note that 
this assumption may not fully reflect the complexities of real-world insurance 
portfolios. In practice, claim frequency and severity may be influenced by common risk 
factors (e.g. policyholder behavior, geographic or economic conditions), potentially 
inducing dependence between them. Ignoring this dependence can lead to biased 
estimates of aggregate risk, particularly in portfolios characterized by frequent and large 
claims, although the independence assumption facilitates analytical derivation and 
computational feasibility. For all the severity distributions 𝑓𝑓𝑘𝑘∗, we derived the recursive 
algorithm as:   

𝑔𝑔(𝑠𝑠) = ∑ 𝑃𝑃𝑘𝑘𝑓𝑓𝑘𝑘∗(𝑠𝑠),∞
𝑘𝑘=2           (8) 

where 𝑃𝑃𝑘𝑘 is defined in (5).  
The Panjer recursion formula defined in (2) is based on the expression 𝑓𝑓𝑘𝑘∗(𝑠𝑠) =

𝑘𝑘
𝑠𝑠
∑ 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑠𝑠−𝑖𝑖𝑘𝑘−1𝑠𝑠
𝑖𝑖=1 ,  𝑠𝑠 = 𝑘𝑘 = 1,2,3. . ., (see Schröter,1990; page 164). We can write this as: 

𝑓𝑓(𝑠𝑠) = 1
𝑠𝑠
∑ 𝑖𝑖𝑓𝑓𝑖𝑖𝑠𝑠
𝑖𝑖=1 .  

Thus,   
𝑔𝑔(𝑠𝑠) = ∑ ��𝑎𝑎 + 𝑏𝑏

𝑘𝑘
�𝑃𝑃𝑘𝑘−1 + 𝑐𝑐

𝑘𝑘
𝑃𝑃𝑘𝑘−2�∞

𝑘𝑘=2 𝑓𝑓𝑘𝑘∗(𝑠𝑠).       (9) 

We have that  

𝑔𝑔(𝑠𝑠) = 𝑎𝑎�𝑃𝑃𝑘𝑘 ��𝑓𝑓𝑖𝑖𝑓𝑓𝑠𝑠−𝑖𝑖𝑘𝑘−1
𝑠𝑠

𝑖𝑖=0

�+ �𝑃𝑃𝑘𝑘

∞

𝑘𝑘=0

∞

𝑘𝑘=0

��
𝑏𝑏𝑏𝑏
𝑠𝑠
𝑓𝑓𝑖𝑖𝑓𝑓𝑠𝑠−𝑖𝑖𝑘𝑘−1

𝑠𝑠

𝑖𝑖=1

�+ 𝛾𝛾, 

where 𝛾𝛾 = ∑ 𝑃𝑃𝑘𝑘 �∑
𝑐𝑐𝑐𝑐
𝑠𝑠
𝑓𝑓𝑖𝑖𝑓𝑓𝑠𝑠−𝑖𝑖𝑘𝑘−1𝑠𝑠

𝑖𝑖=1 �∞
𝑘𝑘=0 . 

Note that ∑ 𝑃𝑃𝑘𝑘 = 1∞
𝑘𝑘=0 .  

Therefore, it follows that  
 

      (10) 
 

for 𝑠𝑠 ≠ 0and 𝑎𝑎,  𝑏𝑏, and 𝑐𝑐 are the parameters. Additionally, 𝑓𝑓0 = 𝑃𝑃(𝑆𝑆 = 0) =
0 and 𝑔𝑔(0) = 𝑝𝑝0 is the initial probability. If 𝑐𝑐 = 0 in (10), we obtain (2), and if we 
define 𝑓𝑓𝑘𝑘∗(𝑠𝑠) as 𝑓𝑓𝑘𝑘∗(𝑠𝑠) = 𝑘𝑘

𝑡𝑡𝑡𝑡
∑ 𝑖𝑖𝑓𝑓𝑖𝑖𝑡𝑡∗𝑓𝑓𝑠𝑠−𝑖𝑖

(𝑘𝑘−𝑡𝑡)∗,  𝑖𝑖 = 1,2, . . . ,𝑠𝑠
𝑖𝑖=1  for 𝑡𝑡 ∈ {1,2, . . . ,𝑘𝑘} in (9), 

(4) becomes a special case of (10). To execute (10), we treat 𝑓𝑓𝑖𝑖 as the claim frequencies 
per number of policies. 

To ensure numerical stability and convergence of (10), the parameters 𝑎𝑎,  𝑏𝑏, and 
𝑐𝑐were estimated via maximum likelihood of (7) using the nlminb() optimizer with box 
constraints: 0 < 𝑎𝑎 < 1,  𝑏𝑏 ≥ 0 and 𝑐𝑐 ∈ ℝ. These constraints prevent instability in the 

( )
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recursion weights and guarantee the validity of the logarithmic expressions in the 
likelihood function. 

Theoretically, unlike (4), the recursion algorithm defined in (10) eliminates the 
need for any form of convolution. 

This study considers the Negative binomial distribution as the count distribution 
for the number of claims (see Section 4, Table 4). 

The probability mass function for the Negative binomial distribution is defined as 

ℎ(𝑆𝑆 = 𝑠𝑠) = �𝑠𝑠 + 𝑟𝑟 − 1
𝑠𝑠 � (1− 𝑝𝑝)𝑠𝑠𝑝𝑝𝑟𝑟 ,  𝑠𝑠 = 0,1,2. . . ,  𝑟𝑟 > 0,𝑝𝑝 ∈ [0,1]. 

We have that  

ℎ(𝑆𝑆 = 0) = �𝑟𝑟 − 1
0 � 𝑝𝑝𝑟𝑟. 

From (10), we define 
𝑔𝑔(0) = 𝑝𝑝0 = ℎ(𝑆𝑆 = 0) = 𝑝𝑝𝑟𝑟 .        (11) 

3.2. The numerical implementation procedure of the truncated Schröter algorithm 

The implementation of the truncated Schröter recursive algorithm involves several 
computational stages designed to estimate the distribution of aggregate claim amounts.  

The procedure can be summarized as follows: 
i. Data Preparation: Obtain and clean claim count data (from real-world and 

simulations). Compute the empirical frequency distribution 𝑓𝑓𝑖𝑖and normalize it to 
ensure ∑𝑓𝑓𝑖𝑖 = 1. Furthermore, the distribution of the data is determined (see 
Table 4). The parameters in equation (10) are estimated using the maximum 
likelihood estimation (MLE) method based on the observed data. The log-
likelihood function is constructed from the truncated probability mass function of 
the claim counts. Parameter estimation is carried out using the nlminb() optimizer 
in R, which is well-suited for bounded, nonlinear optimization problems. This 
approach ensures numerical stability and facilitates the explicit enforcement of 
parameter constraints that are critical to the recursive structure of the model.  
A similar approach is applied by truncating the corresponding probability mass 
functions of the Panjer and Schröter families (see Panjer, 1981; Schröter, 1990). 

ii. Initialization: Determine 𝑔𝑔(0) as in (11) and initialize a numeric vector to store 
𝑔𝑔(𝑠𝑠) for 𝑠𝑠 = 1,2, . . . ,𝑛𝑛. 

iii. Recursive computation: For each 𝑠𝑠 = 2, . . . ,𝑛𝑛, compute 𝑔𝑔(𝑠𝑠) using (10). 
iv. Performance evaluation: Evaluate the sum of 𝑔𝑔(𝑠𝑠) values and record execution 

time per iteration to assess computational efficiency. 
v. Visualization: Utilize graphical tools (e.g. bar plots, execution time plots) to 

display the algorithm's output and benchmark it against the Panjer and standard 
Schröter methods. 
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4. Numerical evaluation 

In this section, we examine the run-time computational efficiency of the intro-
duced truncated Schröter algorithm using the Automobile UK Collision Claims 
(AutoCollision) data obtained from https://instruction.bus.wisc.edu/jfrees/jfreesbooks/ 
Regression%20Modeling/BookWebDec2010/data.html. 

First, we began by exploring the descriptive statistics of the dataset, analyzing 
average claim severity and average claim counts across various age groups and vehicle 
categories to identify patterns and determine how frequently each group files claims. 
Particular attention was given to combinations of age groups and vehicle use categories 
associated with high claim severity and frequency, as these represent higher risk factors 
for insurers and may necessitate adjustments in insurance coverage strategies. 

To model the claim count data, we fitted both the Negative Binomial and 
Generalized Poisson distributions, selected for their ability to handle overdispersion 
commonly observed in count data. The choice between these distributions was guided 
by model fit, using the Akaike Information Criterion (AIC) and Bayesian Information 
Criterion (BIC) to select the model with the lowest values. Furthermore, to implement 
the truncated algorithm defined in (10), we employed the truncated probability mass 
function introduced in (7) to obtain numerical estimates of the parameters 𝑎𝑎�, 𝑏𝑏�, and 
𝑐̂𝑐as ˆ 0.99070,a = 𝑏𝑏� = 1.29297, and 𝑐̂𝑐 = 0.29330 using the maximum likelihood 
estimation method. The computation of aggregate claim amounts using (2), (4), and 
(10) was performed as defined in Section 4.1. 

In this study, all statistical analyses and computations of recursion algorithm run 
times were performed using RStudio on a Lenovo PC equipped with an 11th Gen 
Intel(R) Core(TM) i5-1135G7 @ 2.40GHz processor and 8.00 GB of RAM. 

Table 1: Descriptive Statistics 

Min.     Max.    Mean   Variance   Kurtosis   Skewness 
5.00    970.00   279.44   58374.38       4.08         1.25 

The descriptive statistics offer a comprehensive summary of the dataset’s distribu-
tion and central tendency. The minimum and maximum values define the data range, 
while the mean provides a central value around which the data are distributed. The high 
variance indicates substantial variability (overdispersion), and the positive skewness 
and kurtosis indicate a right-skewed distribution with the presence of outliers. 

Table 2: Analysis of Average Claim Severity by Vehicle Use  

Vehicle Use      Average Claim Severity      Claim Count 
Business      395.21         1075 
DriveLong      265.26         2710 
DriveShort      231.74         3888 
Pleasure      213.20         1269 

https://instruction.bus.wisc.edu/jfrees/jfreesbooks/%20Regression%20Modeling/BookWebDec2010/data.html
https://instruction.bus.wisc.edu/jfrees/jfreesbooks/%20Regression%20Modeling/BookWebDec2010/data.html
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Table 2 shows that vehicles used for business purposes exhibit the highest average 
claim severity. Although the claim count in this category is relatively low compared to 
others, each claim carries a substantial financial impact, indicating that business use 
presents a higher risk of costly claims. 

Vehicles used for long-distance driving exhibit a moderate average claim severity, 
which is substantially lower than that of business use but higher than for short drives 
and pleasure use. The relatively high claim count indicates that long drives are 
associated with frequent incidents, though each claim tends to be less severe than those 
in the business category. 

Short drives register the highest claim count but a lower average claim severity. This 
indicates that while short trips result in more frequent claims, the financial impact of 
each is comparatively minor. The high frequency highlights a notable number of 
incidents with less severe consequences per occurrence. 

Pleasure use is associated with the lowest average claim severity and a relatively low 
claim count, indicating that leisure driving poses the least risk. It results in both fewer 
claims and lower financial losses, making it the lowest-risk category in terms of both 
frequency and severity in the UK Automobile Collision Claims dataset. 

Table 3: Analysis of Average Claim Severity by Age  

  Age             Average Claim Severity 
17–20      391.80 
21–24      293.17 
25–29      284.84 
30–34      279.73 
35–39      212.43 
40–49      249.99 
50–59      251.11 
    60+      247.68 

Table 3 shows that drivers aged 17–20 have the highest average claim severity, 
indicating that accidents involving the youngest drivers tend to result in greater 
financial losses and represent a substantial risk to insurers. A notable decrease in 
average claim severity is observed among drivers aged 21–24, indicating a reduced but 
still relatively high financial risk as drivers gain minimal experience. The trend of 
decreasing claim severity continues in the 25–29 age group, reflecting a further decline 
in financial impact as drivers mature and gain experience. This downward trend 
persists in the 30–34 age group, with a slight reduction in average claim severity 
compared to the previous cohort. A substantial drop is observed in the 35–39 age group, 
indicating a much lower severity of claims and a correspondingly reduced financial risk. 
Interestingly, the 40–49 age group sees a modest increase in average claim severity 
compared to the 35–39 group, though it remains lower than that of drivers under 30, 
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indicating a moderate financial risk. Claim severity levels for the 50–59 age group are 
comparable to those of the 40–49 cohort, pointing to a stable level of financial risk 
among middle-aged drivers. Finally, drivers aged 60 and over exhibit slightly lower 
average claim severity than the 50–59 group, indicating a consistent and moderate 
financial risk, marginally higher than that of the 35–39 group but lower than the 
younger cohorts. 

Table 4: The fitting of Negative Binomial and Generalized Poisson distributions 

      Negative Binomial      Generalized Poisson 
Parameters Estimate  𝑝̂𝑝 = 0.00453, 𝑟̂𝑟 = 1.25042  𝜃𝜃� = 12.78279, 𝜆̂𝜆 = 0.95426 
  
N-Loglikelihood    -211.9633       -216.1883 
AIC      427.9267         436.3767 
BIC      430.8581         439.3081 

As shown in Table 4, the Negative Binomial distribution yields a higher (i.e.  
less negative) log-likelihood and the lowest AIC and BIC values, clearly indicating  
a superior fit to the AutoCollision claim count data compared to the Generalized 
Poisson distribution. These results indicate that the Negative Binomial model is more 
appropriate for capturing the underlying data structure. Both AIC and BIC are essential 
for model selection, as they balance goodness-of-fit with model complexity, thereby 
mitigating the risk of overfitting—an especially important consideration in actuarial 
modeling. Beyond information criteria, residual diagnostics further validate this 
conclusion. A comparative analysis of the Negative Binomial (see Fig. 5) and 
Generalized Poisson models (see Fig. 6) reveals that the former produces Pearson and 
deviance residuals tightly clustered around zero, with minimal dispersion and no 
extreme outliers. The histogram of Pearson residuals is approximately symmetric and 
unimodal. In contrast, the Q–Q plot of deviance residuals aligns closely with the 
theoretical quantile line, indicating that the model assumptions are well met. In 
contrast, the Generalized Poisson model exhibits more dispersed residuals, noticeable 
outliers, a skewed residual histogram, and a Q–Q plot that substantially deviates from 
the reference line, indicating potential model misspecification. Taken together, these 
statistical and graphical diagnostics confirm that the Negative Binomial model provides 
a more accurate and reliable representation of the claim count data, establishing it as 
the preferred modeling choice for this analysis. 

4.1. Computation of aggregate claim 

In this section, we used the estimates of 𝑎𝑎�, 𝑏𝑏�, and 𝑐̂𝑐for (2), (4), and (10) to compute 
aggregate claim amounts for each recursive algorithm and their computational run 
time using Claim count data from the AutoCollision data. Based on Table 5, the 
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performance of the three recursion algorithms is analyzed in terms of computational 
run time and the computed aggregate claim amounts.  

The truncated Schröter recursion algorithm demonstrates the fastest run time at 
0.051093 seconds and yields the highest aggregate claim sum of 0.005483, indicating 
that it either captures more aspects of the claim data or incorporates a more 
comprehensive modeling approach (see Fig. 1). This result implies a probability of 
approximately 0.55% that the total claim amount will not exceed 32 units, and 
conversely, a 99.45% probability that it will exceed this threshold. 

The Panjer recursion algorithm, with a slightly longer runtime of 0.060898 seconds, 
computes an aggregate claim sum of $ 0.004887. Although still efficient, this result may 
indicate a more conservative or less data-sensitive approach (see Fig. 2). The corre-
sponding probability that the total claim amount does not exceed $32 is approximately 
0.49%, implying a 99.51% chance of exceeding this amount. The standard Schröter 
recursion algorithm, which has the longest runtime at 0.173438 seconds, produces an 
aggregate claim sum of $ 0.004930. This outcome implies a balance between sensitivity 
and comprehensiveness; however, it comes with higher computational demands due to 
the convolution component involved in the algorithm (see Fig. 3). The probability that 
the total claim amount will not exceed 32 units is approximately 0.45%. In contrast,  
the probability that it will exceed 32 units is around 99.55%. 

The general interpretation of these results is that the likelihood of the total claim 
amount being less than or equal to 32 units is very low, with probabilities ranging from 
approximately 0.45% to 0.55%.  

Consequently, the probability that the total claim amount will exceed 32 units is 
extremely high, ranging from 99.45% to 99.55% for the AutoCollision dataset. These 
findings indicate that, across all recursion algorithms evaluated, it is almost certain that 
total claims will surpass 32 units, underscoring the high-risk nature of the claims being 
modeled. 

These results provide valuable insights for effective risk management and premium 
setting in the insurance sector. The high probability of large aggregate claims indicates 
that insurers must prepare for substantial payouts. Understanding this risk landscape 
allows insurers to more accurately assess claim distributions and frequencies, leading 
to more informed pricing strategies that ensure financial sustainability. Insurers can 
utilize these insights to allocate adequate reserves for high-expectation claims, thereby 
reducing the risk of insolvency. Moreover, policy designs can incorporate deductibles, 
limits, and exclusions that align with the high likelihood of large claims, striking  
a balance between customer affordability and insurer profitability. These findings also 
support the development of targeted reinsurance strategies, allowing insurers to 
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transfer a portion of high-risk exposures and minimize the financial impact of large 
claims. 

Table 5:  Aggregate claim for the truncated Schröter, Panjer, and Schröter algorithms 

s 
g(s) The Truncated 

Schröter 
g(s) The Panjer g(s) The Schröter 

1 711000 × 10−3 711000 × 10−3 711000 × 10−3 

2 13488 × 10−5 11953 × 10−5 11958 × 10−5 

3 78790 × 10−6 69718 × 10−6 69763 × 10−6 

4 18245 × 10−6 16054 × 10−6 16132 × 10−6 

5 21313 × 10−5 18881 × 10−5 18908 × 10−5 

6 58042 × 10−5 51406 × 10−5 51450 × 10−5 

7 32214 × 10−5 28454 × 10−5 28493 × 10−5 

8 15979 × 10−5 14070 × 10−5 14113 × 10−5 

9 48176 × 10−5 42617 × 10−5 42727 × 10−5 

10 11819 × 10−4 10454 × 10−4 10474 × 10−4 

11 11254 × 10−4 99323 × 10−5 99514 × 10−5 

12 49170 × 10−5 43135 × 10−5 43306 × 10−5 

13 46463 × 10−5 40787 × 10−5 41095 × 10−5 

14 15944 × 10−4 14065 × 10−4 14119 × 10−4 

15 13782 × 10−4 12090 × 10−4 12149 × 10−4 

16 74915 × 10−5 65005 × 10−5 65502 × 10−5 

17 65619 × 10−5 57003 × 10−5 57681 × 10−5 

18 18092 × 10−4 15882 × 10−4 15999 × 10−4 

19 16315 × 10−4 14191 × 10−4 14324 × 10−4 

20 95516 × 10−5 81572 × 10−5 82706 × 10−5 

21 11549 × 10−4 99748 × 10−5 10108 × 10−4 

22 36393 × 10−4 31961 × 10−4 32173 × 10−4 

23 30416 × 10−4 26473 × 10−4 26719 × 10−4 

24 17428 × 10−4 14879 × 10−4 15094 × 10−4 

25 15023 × 10−4 12823 × 10−4 13062 × 10−4 

26 35570 × 10−4 30989 × 10−4 31358 × 10−4 

27 27630 × 10−4 23653 × 10−4 24074 × 10−4 

28 17519 × 10−4 14558 × 10−4 14920 × 10−4 

29 18952 × 10−4 15950 × 10−4 16353 × 10−4 
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Table 5:  Aggregate claim for the truncated Schröter, Panjer, and Schröter algorithms  (cont.) 

s 
g(s) The Truncated 

Schröter 
g(s) The Panjer g(s) The Schröter 

30 30447 × 10−4 26076 × 10−4 26676 × 10−4 

31 27511 × 10−4 23012 × 10−4 23706 × 10−4 

32 22584 × 10−4 18434 × 10−4 19048 × 10−4 
Sum of 

Probabilities 
0.005483 0.004887 0.004535 

Execution 
time in 

seconds(s) 
0.051093 0.060898 0.173438 

The observed differences in computational run times and aggregate claim sums 
across algorithms are attributable to the inherent complexity and structural differences 
of the recursion methods. The truncated Schröter algorithm, with its three-parameter 
structure, strikes an efficient balance between model complexity and computational 
speed, yielding both fast run times and higher aggregate claims. The Panjer recursion 
algorithm, while simpler with only two parameters, offers efficient computation but 
may not capture as many underlying data features. In contrast, the Schröter recursion 
algorithm, which incorporates an additional convolution term, requires more compu-
tation time but provides a nuanced perspective on aggregate claim modeling. 

4.2. Simulation study 

Here, we generate random claim amounts data from the Negative binomial 
distribution by setting 𝑟𝑟 = 100 and 𝑝𝑝 = 0.05. We varied the sample size to examine the 
aggregate claim computational efficiency and run time of the truncated Schröter, 
Panjer, and Schröter recursion algorithms. Initially, we generated 5000 random 
numbers from the Negative binomial distribution and fit (7) to the data to obtain the 
estimate of the parameters 𝑎𝑎�, 𝑏𝑏�, and 𝑐̂𝑐as 𝑎𝑎� = 0.9905, 𝑏𝑏� = 18.3096, 𝑐̂𝑐 = −1.2840, and 
compute𝑔𝑔(0) = 0.00117 to implement the algorithms. Tables 6, 7, and 8 present the 
sample sizes, aggregate claim amounts, and the execution time in seconds for each 
recursion algorithm.  

Fig. 4 illustrates the execution times of the truncated Schröter recursion, Panjer 
recursion, and Schröter recursion algorithms for varying values of n, highlighting 
significant differences in computational efficiency as the sample size increases. The 
truncated Schröter recursion algorithm consistently demonstrates the lowest execution 
times across all values of n, starting at 0.0006919 s for 𝑛𝑛 = 20 and increasing to 
1.5046701 s for 𝑛𝑛 = 5000 (see Fig. 4). 
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Table 6: Efficiency of the truncated Schröter algorithm on simulated claim data 

Recursion Algorithm    Sample (n)       sum of g(s)  Execution time (s) 

The truncated Schröter algorithm 

    20    2.7080348   0.0006919 

    50    1.5211150   0.0036724 

    100    1.1730166   0.0188396 

    150    1.1747598   0.0335643 

    200    1.1296751   0.0586591 

    300    0.9208012   0.1158113 

    600    0.8504156   0.3374069 

    1500   0.6127028   0.8211629 

    2000   0.5397614   1.0198436 

    3000   0.4756758   1.2040498 

    4000   0.4180231   1.4369745 

    5000   0.3979199   1.5046701 

 
 
 
 

 
Figure 1: The execution time plot of the truncated Schröter recursion algorithm for each iteration 
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Figure 2: The execution time plot of the Panjer recursion algorithm for each iteration 

 
 

 
Figure 3: The execution time plot of the Schröter recursion algorithm for each iteration 
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Table 7: Efficiency of the Panjer algorithm on simulated claim data 

Recursion Algorithm   Sample (n)  sum of g(s)  Execution time (s) 

The Panjer algorithm 
   20    0.0075441   0.0014127 
   50    0.0074026   0.0047266 
   100    0.0074002   0.0212255 
   150    0.0074619   0.0378468 
   200    0.0074672   0.0692441 
   300    0.0072761   0.1391730 
   600    0.0073219   0.4021811 
   1500   0.0073130   1.0212069 
   2000   0.0072711   1.0606146 
   3000   0.0072833   1.3638492 
   4000   0.0072209   1.6406126 
   5000   0.0072351   1.7650454 

 
Table 8: Efficiency of the Schröter algorithm on simulated claim data 

Recursion Algorithm   Sample (n)  sum of g(s)  Execution time (s) 

The Schröter algorithm  
   20    0.0062785   0.0028598 
   50    0.0063757   0.0195415 
   100    0.0064331   0.0765483 
   150    0.0064909   0.1735694 
   200    0.0065073   0.2585254 
   300    0.0063946   0.6078202 
   600    0.0064442   1.8534706 
   1500   0.0064868   4.6577935 
   2000   0.0064729   5.4729755 
   3000   0.0065035   6.8906786 
   4000   0.0064749   8.0277340 
   5000   0.00649490   8.7507973 

 
This performance indicates that the algorithm is highly efficient and scalable, 

capable of handling larger datasets with minimal computational burden. The Panjer 
recursion algorithm also exhibits increasing execution times with larger n, beginning at 
0.0014127 s for 𝑛𝑛 = 20 and rising to 1.7650454 s for 𝑛𝑛 = 5000. While reasonably efficient, 
it demonstrates less scalability compared to the truncated Schröter algorithm (see Fig. 
4). In contrast, the Schröter recursion algorithm, which includes a convolution 
component,𝑓𝑓𝑖𝑖2∗, shows substantially higher execution times, starting at 0.0028598 s for 
𝑛𝑛 = 20 and escalating sharply to 8.7507973 s for 𝑛𝑛 = 5000 (see Fig. 4). This steep increase 
reflects poor scalability and reduced efficiency, particularly for large sample sizes, 
making it the least optimal option among the three algorithms evaluated. Overall, the 
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truncated Schröter recursion algorithm emerges as the most efficient and scalable, 
followed by the Panjer recursion algorithm. The Schröter recursion algorithm, while 
potentially offering greater modeling flexibility, is substantially less efficient due to its 
computational complexity. 

To assess the consistency of execution times, each sample size was tested across five 
independent runs. The variation in computational times was negligible, indicating that 
the execution times were stable and reproducible. However, it is worth noting that 
minor fluctuations may still be influenced by the operational state of the computing 
system during execution. 

 
Figure 4. Visual representation of the execution time of the truncated Schröter recursion, Panjer 

recursion, and Schröter recursion algorithms 

 
Figure 5. Graphical residual analysis of the fitted Negative Binomial distribution to the claim data 
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Figure 5. Graphical residual analysis of the fitted Generalized Poisson distribution to the claim data 

5. Conclusion 

This study investigated the computation of aggregate claim amounts using various 
recursive algorithms, with a particular focus on the newly introduced truncated 
Schröter recursion algorithm. The primary objective was to enhance both the accuracy 
and computational efficiency of aggregate claim estimation, an essential component of 
effective risk management and premium setting in the insurance industry. 

The truncated Schröter recursion algorithm demonstrated superior performance 
in numerical evaluations and comparative analysis. When applied to the AutoCollision 
dataset, it consistently delivered the fastest execution times and the highest aggregate 
claim sums, indicating both computational efficiency and modeling comprehensive-
ness. For modeling claim count data, the Negative Binomial distribution was favored 
over the Generalized Poisson distribution due to its ability to accommodate 
overdispersion, as supported by AIC and BIC selection criteria. 

Simulation studies further validated the performance of the truncated Schröter 
algorithm across varying sample sizes, consistently outperforming the Panjer and 
standard Schröter recursion algorithms in terms of execution time and scalability, while 
effectively capturing data variability for more refined analysis. The findings also 
underscored the critical importance of selecting appropriate counting distributions and 
recursion methods when modeling aggregate claim amounts. 

In conclusion, the truncated Schröter recursion algorithm emerges as a robust and 
reliable tool for calculating aggregate claim amounts, offering a strong balance between 
computational speed and modeling accuracy. Its adoption has the potential to improve 
risk assessment substantially and premium pricing strategies, ultimately benefiting 
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both insurers and policyholders. Future research could explore enhancements to this 
algorithm, such as incorporating machine learning techniques to optimize parameter 
estimation based on evolving claim patterns dynamically. Moreover, applying the 
algorithm to other insurance domains beyond automobile claims could further validate 
its generalizability and inform domain-specific refinements. 
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