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The truncated Schroter recursive algorithm for the computation
of aggregate claim amounts

Friday I. Agu'

Abstract

This study introduces and evaluates the truncated Schréter recursive algorithm for computing
aggregate claim amounts in the insurance sector. The algorithm addresses the limitations in
the existing methods by incorporating truncation at 1, which is crucial for an accurate
modelling of insurance claims where the events leading to a claim are pivotal. Using the
AutoCollision dataset, the study compares the truncated Schroter algorithm with the Panjer
and Schroter recursion algorithms, focusing on computational efficiency and accuracy.
Furthermore, the descriptive statistics revealed substantial variability and risk factors, such as
higher claim severity for business-use vehicles and young drivers aged 17-20. The results
demonstrate that the truncated Schroter algorithm substantially reduces the execution time
while maintaining high accuracy, thus making it a superior tool for risk management and
premium setting.

Key words: insurance claim amounts, aggregate claim distribution, recursive algorithm,
insurance risk management, computational efficiency.

1. Introduction

In the insurance domain, company profits depend largely on the premiums
collected from policyholders and the claim amounts paid to insured individuals. Unlike
in other market sectors, such as manufacturing, determining the appropriate premium
for an insurance portfolio is particularly challenging. This complexity arises from the
need to account for future uncertainties and ensure sustained and adequate investment.
To address this, insurance companies employ models designed to accurately compute
aggregate claim amounts within a collective risk framework and estimate the
probability that total claims will not exceed a specified threshold. The process begins
with an estimation of expected costs to establish a baseline premium. This is then
adjusted by adding margins that account for uncertainties, provide a profit buffer, and
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reflect potential aggregate claims payable to policyholders (Yartey, 2020). Central to
this approach is the distribution of aggregate claim amounts, which is derived from the
convolution of claim frequencies and severities. This distribution plays a crucial role in
pricing insurance portfolios as it informs the likelihood and magnitude of potential
losses. Accurate estimation of aggregate claim amounts is therefore critical for
insurance companies as it supports informed decisions about pricing competitiveness,
risk margins, and capital allocation. However, a persistent challenge in actuarial
mathematics lies in modeling this distribution when discrete, non-negative integer
values represent the number of claims and the severity of claims. Accurately capturing
this behavior is essential for reliable risk assessment and premium setting.

1.2. Literature review

Historically, before the advent of modern computing, actuaries relied primarily on
estimation and approximation techniques that lacked a rigorous theoretical foundation
for determining aggregate claim amounts. These methods were limited in accuracy and
reliability, making data-driven decision-making in insurance challenging. A widely
adopted approach for analyzing the distribution of aggregate claim amounts involves
identifying suitable counting distributions defined over the non-negative integers and
fitting them separately to the number of claims and claim severities. However, while
claim frequencies are inherently discrete, claim severities are typically modeled as
continuous random variables and are thus best represented by continuous
distributions. Numerous studies, such as those by Hogg and Stuart (2009), Gray and
Pitts (2012), Packova and Brebera (2015), Pacakova and Gogola (2013), Jindrova and
Pacakova (2016), and Dzidzornu and Minkah (2021), have examined various methods
for fitting distributions to insurance claim datasets. Despite their widespread use, these
approaches can be unreliable as they often fail to accurately capture the convolution
between the number of claims and claim severity, two central components of the
aggregate claim distribution. This convolution forms the basis of the aggregate claims
model and has been applied extensively in actuarial science to solve various insurance-
related problems (Albrecher et al., 2017; Klugman et al., 2019; Mildenhall & Major,
2022). However, computing this convolution presents substantial challenges, primarily
due to the absence of a closed-form expression and the associated computational
complexity.

To address these issues, alternative computational strategies have been developed,
such as the normal power approximation and fast Fourier transform (FFT) techniques
(Beard etal., 1977; Cooley & Tukey, 1965; Heckman & Meyers, 1983; Mildenhall, 2024).
Although these methods enhance theoretical understanding, they often become com-
putationally intensive and less accurate when applied to large datasets with high claim
frequencies and severities. These limitations have motivated the search for more effi-
cient and robust approaches. One such approach is the recursive method, often referred
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to as the "exact method". Unlike convolution-based techniques, the recursive approach
assumes that the number of claims and claim severity distributions are discrete, ena-
bling the computation of aggregate claim amounts through recursive formulas. This
method substantially reduces computational burden while maintaining accuracy, par-
ticularly in scenarios involving a large number of claims. A foundational contribution
in this area was made by Panjer (1981), who introduced the Panjer recursive family of
discrete distributions and the corresponding recursion formula for computing aggre-
gate claim amounts. The Panjer recursive formula has spurred extensive research in
actuarial science, with notable contributions from Sundt and Vernic (2009), Yartey
(2020), Dickson (2016), and Ghinawan et al. (2021). More recently, Tzaninis and
Bozikas (2024) extended the Panjer family of claim number distributions by treating
the family’s parameters as random variables, thereby deriving a more flexible com-
pound distribution. Their formulation assumes that claim sizes are conditionally inde-
pendent and identically distributed, as well as conditionally independent of the number
of claims. In a related development, Fackler (2023) introduced a reparameterization of
the Panjer family, enhancing its modeling flexibility.

Although the Panjer recursion effectively models aggregate claim amounts, its ap-
plicability is confined to a narrow class of counting distributions that have a fixed, pos-
itive probability at zero. To address this constraint, Schroter (1990) proposed the
Schroter recursive formula, which accommodates a broader range of counting distri-
butions and more accurately captures the dynamics of aggregate claims. However, this
method relies on convolution operations, making it computationally demanding, espe-
cially when dealing with high claim frequencies and large claim amounts. Recent ad-
vances in computational modeling have substantially broadened the methodologies
available for estimating aggregate claim amounts, supplementing—and in some cases
outperforming—traditional actuarial approaches. For instance, Qiu (2019) compared
classical reserving methods, such as the Chain Ladder and Bornhuetter-Ferguson tech-
niques, with machine learning-based individual claims reserving. The study found that
models like generalized linear models, artificial neural networks, random forests, and
support vector machines delivered superior performance on simulated datasets rich in
claim-level features. However, these advantages diminished when applied to smaller,
real-world datasets. Likewise, Hofmann (2022) proposed fast Fourier transform (FFT)-
based algorithms as a computationally efficient alternative to the Panjer recursion un-
der arbitrary claim frequency distributions, incorporating exponential tilting to reduce
wrap-around effects and better capture distribution tails. Additionally, Gamaleldin
et al. (2025) introduced a hybrid CNN-LSTM model that captures both spatial and tem-
poral patterns in insurance claims data, considerably improving volatility forecasting
and enabling proactive risk management. While these studies underscore the growing
influence of machine learning in enhancing the precision, scalability, and adaptability
of aggregate claims modeling, they also highlight a key trade-off: improved predictive
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performance often comes at the cost of increased computational complexity and re-
source demands during implementation and model tuning.

The computation of aggregate claim amounts plays an increasingly pivotal role
in risk management and the pricing of insurance coverage. Insurance companies are
inherently motivated to minimize claim payouts while maximizing premium income,
thereby strengthening their ability to manage future uncertainties and withstand cata-
strophic losses. Within this highly competitive landscape, insurers face the added chal-
lenge of dealing with the unpredictable nature of claim occurrences embedded in in-
surance contracts.

Despite the utility of the Schréter recursive formula, it does not fully capture the
dynamics of claim amounts truncated at one. This practice holds significant practical
relevance in real-world insurance settings. In many cases, insurers are primarily con-
cerned with the number of events that generate claims, rather than the exact amounts.
Once a claim is reported, the minimum observed claim amount is often truncated at
one, effectively implying a zero probability for a claim amount of zero. This reflects
typical policy structures that include deductibles, where insured individuals are respon-
sible for losses below a certain threshold, and only the excess is reimbursed. Conse-
quently, minor losses below the deductible are frequently unreported, making one the
effective lower bound for observed claim amounts. This truncation has a substantial
impact on the modeling of risk exposure, influencing both the accuracy of risk assess-
ment and the determination of premium rates. In risk theory, truncated distributions
are essential for modeling claim severities and inter-arrival times, providing insurers
and actuaries with critical tools to better understand the frequency and magnitude of
losses. As such, accurately modeling the number of claims truncated at one is vital for
capturing the true nature of insurance liabilities. It requires careful consideration of the
underlying distributions that govern both claim frequency and severity, ultimately sup-
porting more precise pricing and effective risk management. To address this gap, the
present study introduces and explores the truncated Schréter recursive formula—a
mathematical framework designed to improve accuracy in the computation of aggre-
gate claim amounts. The study further assesses the computational efficiency of the pro-
posed algorithm by analyzing its runtime performance, offering insights into its prac-
tical applicability for large-scale insurance datasets.

2. The recursive formulas

2.1. The Panjer recursive formula
The Panjer (1981) recursive formula is defined as
b
Pe=(a+2) Py, k=123,.. (1)

where a and bare parameters, P, denotes the recurrent probability, Pj_qis the
backward recurrent probability, and by definition, P, = 0 for k < 0. The counting
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distributions that satisfied (1) were explored in Panjer (1981). Furthermore, Panjer

(1981) obtained the corresponding recursion algorithm for (1) defined as:
1 s

bi .
9) = = Tin (a + ) figs - ), 2)
and by definition, fy = P(X = 0) = 0andg(0) = py, wherepgdenotes the probability
mass function of the counting distribution evaluated at zero—that is, the initial

probability. For instance, ifp,is the Poisson distribution function from the recursive
family defined in (1), then p,evaluated at zero (py) and one (p;) represents the initial
probabilities of no claim and the probability of a claim, respectively.

2.2. The Schroter recursive formula

While the Panjer recursive formula addresses the challenges of the traditional
convolution method, it is limited to a few distributions. Hence, Schroter (1990)
generalized (1) and obtained the recursive formula expressed as:

Pe=(a+ %) Peor +1Peg k=123,.., 3)

where g, b, and c are parameters, P,_; and Py_, are recursive backward probabilities,
and P, = 0 for k < 0 (by definition). Note that for c = 0, (1) becomes a particular case
of (3). Additionally, the counting distributions defined by (3) also contain the
convolutions of the Poisson distribution and another distribution from (1) (see
Schroter, 1990). Furthermore, Schréter (1990) obtained the corresponding recursion
algorithm for (3) defined as:

1 bi i 2 .
9 = o Tina (e +2) fi + 52 £ | (s D), (4)
where f;**has to be evaluated by the convolution formula f;** = Z§-=0 fjfi-jandfor c =

0, (4) becomes (2). The parameter estimation of (3) has been studied in Agu, Macutek,
and Sztics (2023).

3. The truncated Schroter recursive formula

In this section, we present the truncated Schroter recursive formula. We defined
the truncated Schroéter recursive formula as:

b
Pe=(a+ ;) Peor + 1 Pe k=234, (5)
where the parameters are defined as in (3) and note that (5) is truncated at 1.

First, let Kbe a discrete random variable taking non-negative integer values as
defined in (5) and using the fact that the probability generating function is defined as:

G(s) = Z skp,,

k=0
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where s € [0,1]such that G(s) = Oand Pyis the recursive probability defined in (5)
and )} P, = 1. Thus, the probability generating function corresponding to (5) is:

a(a+b)+c

Gy =e o (L) ©)

1-as

for |as| # 1.
The derived truncated probability mass function corresponding to (5) is given as:

c a(a+b)+c aatbyre (=€) g
< B i1
ea(l—-a) a? Z?:o( a? ; >( ?12—0!

qn = e ,n=12,..., 0<a<l1, bc€eR.

1—e%(1—a) a?
7)
b . . .
(I(LZ)H, x = 2, and define the generating function for the negative

Let r =

binomial coefficient as:

oo

Z(r_i_i_l)z":(l—z)‘r, |z| < 1.

k=0
The goal is to express the finite sum in a form that leverages the generating function.

n (T+i-— 1) (—x)"iat
To relate )7, ( ; ~or
binomial coefficient above, we differentiate (1 — z) ~"with respect to zevaluated at z =
x —a (0 < a < 1) to obtain terms that match the structure of our sum. We have that

to the generating function for the negative

i (r +i- 1) (0" 'a" _I'(r+n) ( a )(””).

i (n=0!  nllr'(r) \a—c+a?

i=0

Hence, (7) can be expressed as

ei(l _ a)r r(r+n) ( a

)(r+n)

n!'r(r) \a-c+a?

qn ,n=12,..., 0<a<1 b>=>0c€eR.

1- e§(1 —a)”
Also, the log-likelihood function corresponding to (7) can be simplified as:
¢(a, b, clng,...,ng)

K
=k log [ei(l - a)r] + Z log
=1

rar+n) ( a )(T+")]

n!'I'(r) \a—c+a?

—klog [1 — e§(1 — a)r].

3.1. The truncated Schroter algorithm

Let X4, X5, ..., X, be independent and identically distributed claim severities over
the non-negative integers with probability density f, =p(X;=k) for i=
1,2,....,n,k=0,12,..., and f* =P(X; + X,+...+X, = k) denotes the n-fold
convolution of f;. Additionally, let Nbe a discrete random variable representing the
number of claims with a discrete probability mass function defined as p,, = P(N = n),
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such thatX;are stochastically independent of N, and S = Y, X; is the aggregate claim.
While the truncated Schréter algorithm is derived under the classical assumption that
claim frequency and severity are stochastically independent, it is important to note that
this assumption may not fully reflect the complexities of real-world insurance
portfolios. In practice, claim frequency and severity may be influenced by common risk
factors (e.g. policyholder behavior, geographic or economic conditions), potentially
inducing dependence between them. Ignoring this dependence can lead to biased
estimates of aggregate risk, particularly in portfolios characterized by frequent and large
claims, although the independence assumption facilitates analytical derivation and
computational feasibility. For all the severity distributions f**, we derived the recursive
algorithm as:
9(8) = Tiia P (5), (8)
where Py, is defined in (5).
The Panjer recursion formula defined in (2) is based on the expression f**(s) =

%Zle if; k=1 s =k =1,23... (see Schroter,1990; page 164). We can write this as:

s—i
f(8) =18 ife
Thus,
9(5) = iz (¢ +7) Pcs + £ Pecz| £<(9). (9)
We have that
oo S oo S .
k-1 bi = -1
g(s):aZPk Zfi s—i +Zpk ?fi s—i | TV
k=0 i=0 k=0 i=1

where Y = Z}?:o Pk (Zfz1%fl sk—_il)'
Note that 5o P = 1.

Therefore, it follows that

s

lf Z{aJrg(bJrc)}fig(s—i), (10)

l-a 0 i=l

g(s)=

for s+ 0and a, b, and care the parameters. Additionally, f, =P(S=0)=
0 and g(0) = py is the initial probability. If ¢ = 0 in (10), we obtain (2), and if we
define f**(s) as f¥*(s) = %Zle ifi S(_ki_t)*, i=12,...,fort €{1,2,...,k}in (9),
(4) becomes a special case of (10). To execute (10), we treat f; as the claim frequencies
per number of policies.

To ensure numerical stability and convergence of (10), the parameters a, b, and
cwere estimated via maximum likelihood of (7) using the nlminb() optimizer with box
constraints: 0 < a <1, b = 0 and ¢ € R. These constraints prevent instability in the



108

Friday I. Agu: The truncated Schroter recursive algorithm...

recursion weights and guarantee the validity of the logarithmic expressions in the

likelihood function.

Theoretically, unlike (4), the recursion algorithm defined in (10) eliminates the

need for any form of convolution.

This study considers the Negative binomial distribution as the count distribution

for the number of claims (see Section 4, Table 4).

3.2.

The probability mass function for the Negative binomial distribution is defined as
s=s5)=("""T" Na-pop, s=012., r>0pef0]
We have that
— _(r— 1\ »
hs=0) = ( 0 ).
From (10), we define
g(0) =po=h(S=0)=p". (11)
The numerical implementation procedure of the truncated Schréter algorithm

The implementation of the truncated Schréter recursive algorithm involves several

computational stages designed to estimate the distribution of aggregate claim amounts.

i.

ii.

iii.

iv.

The procedure can be summarized as follows:

Data Preparation: Obtain and clean claim count data (from real-world and
simulations). Compute the empirical frequency distribution f;and normalize it to
ensure Y. f; = 1. Furthermore, the distribution of the data is determined (see
Table 4). The parameters in equation (10) are estimated using the maximum
likelihood estimation (MLE) method based on the observed data. The log-
likelihood function is constructed from the truncated probability mass function of
the claim counts. Parameter estimation is carried out using the nlminb() optimizer
in R, which is well-suited for bounded, nonlinear optimization problems. This
approach ensures numerical stability and facilitates the explicit enforcement of
parameter constraints that are critical to the recursive structure of the model.
A similar approach is applied by truncating the corresponding probability mass
functions of the Panjer and Schroéter families (see Panjer, 1981; Schréter, 1990).
Initialization: Determine g(0) as in (11) and initialize a numeric vector to store
g(@s) fors=12,...,n

Recursive computation: For each s = 2,...,n, compute g(s) using (10).
Performance evaluation: Evaluate the sum of g(s) values and record execution
time per iteration to assess computational efficiency.

Visualization: Utilize graphical tools (e.g. bar plots, execution time plots) to
display the algorithm's output and benchmark it against the Panjer and standard
Schroter methods.



STATISTICS IN TRANSITION new series, December 2025 109

4. Numerical evaluation

In this section, we examine the run-time computational efficiency of the intro-
duced truncated Schroter algorithm using the Automobile UK Collision Claims
(AutoCollision) data obtained from https://instruction.bus.wisc.edu/jfrees/jfreesbooks/
Regression%20Modeling/BookWebDec2010/data.html.

First, we began by exploring the descriptive statistics of the dataset, analyzing
average claim severity and average claim counts across various age groups and vehicle
categories to identify patterns and determine how frequently each group files claims.
Particular attention was given to combinations of age groups and vehicle use categories
associated with high claim severity and frequency, as these represent higher risk factors
for insurers and may necessitate adjustments in insurance coverage strategies.

To model the claim count data, we fitted both the Negative Binomial and
Generalized Poisson distributions, selected for their ability to handle overdispersion
commonly observed in count data. The choice between these distributions was guided
by model fit, using the Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC) to select the model with the lowest values. Furthermore, to implement
the truncated algorithm defined in (10), we employed the truncated probability mass
function introduced in (7) to obtain numerical estimates of the parameters @, b, and
Cas a=0.99070, b =1.29297, and ¢ = 0.29330 using the maximum likelihood
estimation method. The computation of aggregate claim amounts using (2), (4), and
(10) was performed as defined in Section 4.1.

In this study, all statistical analyses and computations of recursion algorithm run
times were performed using RStudio on a Lenovo PC equipped with an 11th Gen
Intel(R) Core(TM) i5-1135G7 @ 2.40GHz processor and 8.00 GB of RAM.

Table 1: Descriptive Statistics

Min. Max. Mean Variance Kurtosis Skewness
5.00 970.00 279.44 58374.38 4.08 1.25

The descriptive statistics offer a comprehensive summary of the dataset’s distribu-
tion and central tendency. The minimum and maximum values define the data range,
while the mean provides a central value around which the data are distributed. The high
variance indicates substantial variability (overdispersion), and the positive skewness
and kurtosis indicate a right-skewed distribution with the presence of outliers.

Table 2: Analysis of Average Claim Severity by Vehicle Use

Vehicle Use Average Claim Severity Claim Count
Business 395.21 1075
DriveLong 265.26 2710
DriveShort 231.74 3888

Pleasure 213.20 1269
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Table 2 shows that vehicles used for business purposes exhibit the highest average
claim severity. Although the claim count in this category is relatively low compared to
others, each claim carries a substantial financial impact, indicating that business use
presents a higher risk of costly claims.

Vehicles used for long-distance driving exhibit a moderate average claim severity,
which is substantially lower than that of business use but higher than for short drives
and pleasure use. The relatively high claim count indicates that long drives are
associated with frequent incidents, though each claim tends to be less severe than those
in the business category.

Short drives register the highest claim count but a lower average claim severity. This
indicates that while short trips result in more frequent claims, the financial impact of
each is comparatively minor. The high frequency highlights a notable number of
incidents with less severe consequences per occurrence.

Pleasure use is associated with the lowest average claim severity and a relatively low
claim count, indicating that leisure driving poses the least risk. It results in both fewer
claims and lower financial losses, making it the lowest-risk category in terms of both
frequency and severity in the UK Automobile Collision Claims dataset.

Table 3: Analysis of Average Claim Severity by Age

Age Average Claim Severity

17-20 391.80
21-24 293.17
25-29 284.84
30-34 279.73
35-39 212.43
40-49 249.99
50-59 251.11

60+ 247.68

Table 3 shows that drivers aged 17-20 have the highest average claim severity,
indicating that accidents involving the youngest drivers tend to result in greater
financial losses and represent a substantial risk to insurers. A notable decrease in
average claim severity is observed among drivers aged 21-24, indicating a reduced but
still relatively high financial risk as drivers gain minimal experience. The trend of
decreasing claim severity continues in the 25-29 age group, reflecting a further decline
in financial impact as drivers mature and gain experience. This downward trend
persists in the 30-34 age group, with a slight reduction in average claim severity
compared to the previous cohort. A substantial drop is observed in the 35-39 age group,
indicating a much lower severity of claims and a correspondingly reduced financial risk.
Interestingly, the 40-49 age group sees a modest increase in average claim severity
compared to the 35-39 group, though it remains lower than that of drivers under 30,
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indicating a moderate financial risk. Claim severity levels for the 50-59 age group are
comparable to those of the 40-49 cohort, pointing to a stable level of financial risk
among middle-aged drivers. Finally, drivers aged 60 and over exhibit slightly lower
average claim severity than the 50-59 group, indicating a consistent and moderate
financial risk, marginally higher than that of the 35-39 group but lower than the
younger cohorts.

Table 4: The fitting of Negative Binomial and Generalized Poisson distributions

Negative Binomial Generalized Poisson
Parameters Estimate p = 0.00453, 7 = 1.25042 6 =12.78279,1 = 0.95426
N-Loglikelihood -211.9633 -216.1883
AIC 427.9267 436.3767
BIC 430.8581 439.3081

As shown in Table 4, the Negative Binomial distribution yields a higher (i.e.
less negative) log-likelihood and the lowest AIC and BIC values, clearly indicating
a superior fit to the AutoCollision claim count data compared to the Generalized
Poisson distribution. These results indicate that the Negative Binomial model is more
appropriate for capturing the underlying data structure. Both AIC and BIC are essential
for model selection, as they balance goodness-of-fit with model complexity, thereby
mitigating the risk of overfitting—an especially important consideration in actuarial
modeling. Beyond information criteria, residual diagnostics further validate this
conclusion. A comparative analysis of the Negative Binomial (see Fig. 5) and
Generalized Poisson models (see Fig. 6) reveals that the former produces Pearson and
deviance residuals tightly clustered around zero, with minimal dispersion and no
extreme outliers. The histogram of Pearson residuals is approximately symmetric and
unimodal. In contrast, the Q-Q plot of deviance residuals aligns closely with the
theoretical quantile line, indicating that the model assumptions are well met. In
contrast, the Generalized Poisson model exhibits more dispersed residuals, noticeable
outliers, a skewed residual histogram, and a Q-Q plot that substantially deviates from
the reference line, indicating potential model misspecification. Taken together, these
statistical and graphical diagnostics confirm that the Negative Binomial model provides
a more accurate and reliable representation of the claim count data, establishing it as
the preferred modeling choice for this analysis.

4.1. Computation of aggregate claim

In this section, we used the estimates of @, b, and éfor (2), (4), and (10) to compute
aggregate claim amounts for each recursive algorithm and their computational run

time using Claim count data from the AutoCollision data. Based on Table 5, the
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performance of the three recursion algorithms is analyzed in terms of computational
run time and the computed aggregate claim amounts.

The truncated Schréter recursion algorithm demonstrates the fastest run time at
0.051093 seconds and yields the highest aggregate claim sum of 0.005483, indicating
that it either captures more aspects of the claim data or incorporates a more
comprehensive modeling approach (see Fig. 1). This result implies a probability of
approximately 0.55% that the total claim amount will not exceed 32 units, and
conversely, a 99.45% probability that it will exceed this threshold.

The Panjer recursion algorithm, with a slightly longer runtime of 0.060898 seconds,
computes an aggregate claim sum of $ 0.004887. Although still efficient, this result may
indicate a more conservative or less data-sensitive approach (see Fig. 2). The corre-
sponding probability that the total claim amount does not exceed $32 is approximately
0.49%, implying a 99.51% chance of exceeding this amount. The standard Schroter
recursion algorithm, which has the longest runtime at 0.173438 seconds, produces an
aggregate claim sum of $ 0.004930. This outcome implies a balance between sensitivity
and comprehensiveness; however, it comes with higher computational demands due to
the convolution component involved in the algorithm (see Fig. 3). The probability that
the total claim amount will not exceed 32 units is approximately 0.45%. In contrast,
the probability that it will exceed 32 units is around 99.55%.

The general interpretation of these results is that the likelihood of the total claim
amount being less than or equal to 32 units is very low, with probabilities ranging from
approximately 0.45% to 0.55%.

Consequently, the probability that the total claim amount will exceed 32 units is
extremely high, ranging from 99.45% to 99.55% for the AutoCollision dataset. These
findings indicate that, across all recursion algorithms evaluated, it is almost certain that
total claims will surpass 32 units, underscoring the high-risk nature of the claims being
modeled.

These results provide valuable insights for effective risk management and premium
setting in the insurance sector. The high probability of large aggregate claims indicates
that insurers must prepare for substantial payouts. Understanding this risk landscape
allows insurers to more accurately assess claim distributions and frequencies, leading
to more informed pricing strategies that ensure financial sustainability. Insurers can
utilize these insights to allocate adequate reserves for high-expectation claims, thereby
reducing the risk of insolvency. Moreover, policy designs can incorporate deductibles,
limits, and exclusions that align with the high likelihood of large claims, striking
a balance between customer affordability and insurer profitability. These findings also

support the development of targeted reinsurance strategies, allowing insurers to
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transfer a portion of high-risk exposures and minimize the financial impact of large

claims.

Table 5: Aggregate claim for the truncated Schréter, Panjer, and Schréter algorithms

g(s) The Truncated
Schréter

g(s) The Panjer

g(s) The Schroter

—

711000 x 1073

711000 x 1073

711000 x 1073

2 13488 x 107> 11953 x 107> 11958 x 107>
3 78790 x 1076 69718 x 107 69763 X 107°
4 18245 x 107° 16054 x 107° 16132 x 107
5 21313 x 1075 18881 x 1075 18908 X 10>
6 58042 x 10~5 51406 x 10~5 51450 X 1075
7 32214 x 1075 28454 x 1075 28493 x 1075
8 15979 x 107> 14070 x 1075 14113 x 1075
9 48176 x 1075 42617 x 1075 42727 x 107°
10 11819 x 10™* 10454 x 10™* 10474 x 10™*
11 11254 x 10™* 99323 x 1075 99514 x 107°
12 49170 x 1075 43135 x 1075 43306 x 107°
13 46463 x 1075 40787 x 1075 41095 x 107°
14 15944 x 10™* 14065 x 10™* 14119 x 10™*
15 13782 x 107 12090 x 107 12149 x 10™*
16 74915 x 1075 65005 x 1075 65502 x 107°
17 65619 x 10~5 57003 x 10~5 57681 x 1075
18 18092 x 10™* 15882 x 107 15999 x 10™*
19 16315 x 107 14191 x 107 14324 x 10™*
20 95516 x 1075 81572 x 1075 82706 x 107°
21 11549 x 10™* 99748 x 1075 10108 x 10™*
22 36393 x 107 31961 x 10™* 32173 x 1074
23 30416 x 10~* 26473 x 10~* 26719 x 107*
24 17428 x 107 14879 x 10™* 15094 x 10~*
25 15023 x 10™* 12823 x 107 13062 x 10™*
26 35570 x 10™* 30989 x 10™* 31358 x 1074
27 27630 x 10~* 23653 x 10~* 24074 x 107*
28 17519 x 107 14558 x 107 14920 x 10™*
29 18952 x 10™* 15950 x 10™* 16353 x 10™*
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Table 5: Aggregate claim for the truncated Schréter, Panjer, and Schréter algorithms (cont.)

The T ted
s ) Scehr;::ca € g(s) The Panjer g(s) The Schroter
30 30447 x 10~* 26076 x 10~ 26676 x 107*
31 27511 x 10™* 23012 x 10~* 23706 x 10~*
32 22584 x 1074 18434 x 1074 19048 x 107+
Sum of
0.005483 0.004887 0.004535
Probabilities
Execution
time in 0.051093 0.060898 0.173438
seconds(s)

The observed differences in computational run times and aggregate claim sums
across algorithms are attributable to the inherent complexity and structural differences
of the recursion methods. The truncated Schroter algorithm, with its three-parameter
structure, strikes an efficient balance between model complexity and computational
speed, yielding both fast run times and higher aggregate claims. The Panjer recursion
algorithm, while simpler with only two parameters, offers efficient computation but
may not capture as many underlying data features. In contrast, the Schréter recursion
algorithm, which incorporates an additional convolution term, requires more compu-
tation time but provides a nuanced perspective on aggregate claim modeling.

4.2. Simulation study

Here, we generate random claim amounts data from the Negative binomial
distribution by setting r = 100 and p = 0.05. We varied the sample size to examine the
aggregate claim computational efficiency and run time of the truncated Schroter,
Panjer, and Schroter recursion algorithms. Initially, we generated 5000 random
numbers from the Negative binomial distribution and fit (7) to the data to obtain the
estimate of the parameters @, b, and éas @ = 0.9905, b = 18.3096, ¢ = —1.2840, and
computeg(0) = 0.00117 to implement the algorithms. Tables 6, 7, and 8 present the
sample sizes, aggregate claim amounts, and the execution time in seconds for each
recursion algorithm.

Fig. 4 illustrates the execution times of the truncated Schréter recursion, Panjer
recursion, and Schréter recursion algorithms for varying values of n, highlighting
significant differences in computational efficiency as the sample size increases. The
truncated Schroéter recursion algorithm consistently demonstrates the lowest execution
times across all values of n, starting at 0.0006919 s for n = 20 and increasing to
1.5046701 s for n = 5000 (see Fig. 4).
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Table 6: Efficiency of the truncated Schroter algorithm on simulated claim data

Recursion Algorithm Sample (n) sum of g(s) Execution time (s)

The truncated Schroéter algorithm

20 2.7080348 0.0006919
50 1.5211150 0.0036724
100 1.1730166 0.0188396
150 1.1747598 0.0335643
200 1.1296751 0.0586591
300 0.9208012 0.1158113
600 0.8504156 0.3374069
1500 0.6127028 0.8211629
2000 0.5397614 1.0198436
3000 0.4756758 1.2040498
4000 0.4180231 1.4369745
5000 0.3979199 1.5046701
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Figure 1: The execution time plot of the truncated Schroter recursion algorithm for each iteration
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Figure 2: The execution time plot of the Panjer recursion algorithm for each iteration
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Figure 3: The execution time plot of the Schréter recursion algorithm for each iteration
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Table 7: Efficiency of the Panjer algorithm on simulated claim data

Recursion Algorithm Sample (n) sumofg(s)  Execution time (s)

The Panjer algorithm
20 0.0075441 0.0014127
50 0.0074026 0.0047266
100 0.0074002 0.0212255
150 0.0074619 0.0378468
200 0.0074672 0.0692441
300 0.0072761 0.1391730
600 0.0073219 0.4021811
1500 0.0073130 1.0212069
2000 0.0072711 1.0606146
3000 0.0072833 1.3638492
4000 0.0072209 1.6406126
5000 0.0072351 1.7650454

Table 8: Efficiency of the Schroter algorithm on simulated claim data

Recursion Algorithm Sample (n) sumofg(s)  Execution time (s)

The Schréter algorithm
20 0.0062785 0.0028598
50 0.0063757 0.0195415
100 0.0064331 0.0765483
150 0.0064909 0.1735694
200 0.0065073 0.2585254
300 0.0063946 0.6078202
600 0.0064442 1.8534706
1500 0.0064868 4.6577935
2000 0.0064729 5.4729755
3000 0.0065035 6.8906786
4000 0.0064749 8.0277340
5000 0.00649490 8.7507973

This performance indicates that the algorithm is highly efficient and scalable,
capable of handling larger datasets with minimal computational burden. The Panjer
recursion algorithm also exhibits increasing execution times with larger #, beginning at
0.0014127 s for n = 20 and rising to 1.7650454 s for n = 5000. While reasonably efficient,
it demonstrates less scalability compared to the truncated Schroter algorithm (see Fig.
4). In contrast, the Schroter recursion algorithm, which includes a convolution
component,f;?*, shows substantially higher execution times, starting at 0.0028598 s for
n =20 and escalating sharply to 8.7507973 s for n = 5000 (see Fig. 4). This steep increase
reflects poor scalability and reduced efficiency, particularly for large sample sizes,
making it the least optimal option among the three algorithms evaluated. Overall, the
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truncated Schréter recursion algorithm emerges as the most efficient and scalable,
followed by the Panjer recursion algorithm. The Schréter recursion algorithm, while
potentially offering greater modeling flexibility, is substantially less efficient due to its
computational complexity.

To assess the consistency of execution times, each sample size was tested across five
independent runs. The variation in computational times was negligible, indicating that
the execution times were stable and reproducible. However, it is worth noting that
minor fluctuations may still be influenced by the operational state of the computing
system during execution.

0
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The Algorithms
Truncated_Schroter
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Schroter

Execution Time (seconds)

n
e}

0.0
o 1000 2000 3000 4000 5000
Sample (n)
Figure 4. Visual representation of the execution time of the truncated Schréter recursion, Panjer
recursion, and Schroter recursion algorithms

Pearson Residuals vs Fitted Deviance Residuals vs Fitted
= 2
< 2
=} e — . — -
= ° L %
z - < z = &=
= g = a
= & & T 2
5 o = a
a [= BT °
- — % =3
T T T T T T T T
200 250 300 350 400 200 250 300 350 400
Fitted values Fitted values
Histogram of Pearson Residuals QQ Plot of Deviance Residuals

6

4

Sample Quantiles

2

T T T T 1 T T T T T
-1 o 1 2 3 -2 -1 o 1 2

Pearson residuals Theoretical Quantiles

Figure 5. Graphical residual analysis of the fitted Negative Binomial distribution to the claim data
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Figure 5. Graphical residual analysis of the fitted Generalized Poisson distribution to the claim data

5. Conclusion

This study investigated the computation of aggregate claim amounts using various
recursive algorithms, with a particular focus on the newly introduced truncated
Schroter recursion algorithm. The primary objective was to enhance both the accuracy
and computational efficiency of aggregate claim estimation, an essential component of
effective risk management and premium setting in the insurance industry.

The truncated Schréter recursion algorithm demonstrated superior performance
in numerical evaluations and comparative analysis. When applied to the AutoCollision
dataset, it consistently delivered the fastest execution times and the highest aggregate
claim sums, indicating both computational efficiency and modeling comprehensive-
ness. For modeling claim count data, the Negative Binomial distribution was favored
over the Generalized Poisson distribution due to its ability to accommodate
overdispersion, as supported by AIC and BIC selection criteria.

Simulation studies further validated the performance of the truncated Schroter
algorithm across varying sample sizes, consistently outperforming the Panjer and
standard Schréter recursion algorithms in terms of execution time and scalability, while
effectively capturing data variability for more refined analysis. The findings also
underscored the critical importance of selecting appropriate counting distributions and
recursion methods when modeling aggregate claim amounts.

In conclusion, the truncated Schréter recursion algorithm emerges as a robust and
reliable tool for calculating aggregate claim amounts, offering a strong balance between
computational speed and modeling accuracy. Its adoption has the potential to improve
risk assessment substantially and premium pricing strategies, ultimately benefiting



120 Friday I. Agu: The truncated Schroter recursive algorithm...

both insurers and policyholders. Future research could explore enhancements to this
algorithm, such as incorporating machine learning techniques to optimize parameter
estimation based on evolving claim patterns dynamically. Moreover, applying the
algorithm to other insurance domains beyond automobile claims could further validate
its generalizability and inform domain-specific refinements.

Funding

This study was supported by the Slovak Academy of Sciences Doktogrant: APP0515
(Friday I. Agu).

Dedication

This manuscript is dedicated to my esteemed supervisor, Jan Macutek, whose
guidance, support, and encouragement have been instrumental in shaping this study.
Your unwavering belief in my abilities and insightful mentorship have played a vital
role in both my academic and professional development. I am deeply grateful for your
continued support and inspiration.

Conflict of interest

There is no conflict of interest for this study.

References

Agu, F. I, Macutek, J. and Szlics, G., (2023). A Simple Estimation of Parameters for
Discrete Distributions from the Schroter Family. Statistika: Statistics ¢ Economy
Journal, 103(2).

Albrecher, H., Beirlant, J. and Teugels, J. L., (2017). Reinsurance: actuarial and
statistical aspects. John Wiley ¢ Sons.

Beard, R. E., Pentikiinen, T. and Pesonen, E., (1977). Risk theory (2nd ed.). Chapman
and Hall.

Cooley, J. W., Tukey, J. W,, (1965). An algorithm for the machine calculation of
complex Fourier series. Mathematics of computation, 19(90), pp. 297-301.

Dickson, D. C. (2016). Insurance risk and ruin. Cambridge University Press.

Dzidzornu, S. B., Minkah, R., (2021). Assessing the Performance of the Discrete
Generalised Pareto Distribution in Modelling Non-life Insurance Claims. Journal
of Probability and Statistics, 2021(1), 5518583.



STATISTICS IN TRANSITION new series, December 2025 121

Fackler, M., (2023). Panjer class revisited: one formula for the distributions of the
Panjer (a, b, n) class. Annals of Actuarial Science, 17(1), pp. 145-169.

Gamaleldin, W., Attayyib, O., Alnfiai, M. M., Alotaibi, F. A. and Ming, R., (2025).
A hybrid model based on CNN-LSTM for assessing the risk of increasing claims
in insurance companies. Peer] Computer Science, 11, €2830.

Ghinawan, F., Nurrohmabh, S. and Fithriani, I., (2021). Recursive and moment-based
approximation of aggregate loss distribution. In Journal of Physics: Conference
Series (Vol. 1725, No. 1, p. 012101). IOP Publishing.

Gray, R. ], Pitts, S. M., (2012). Risk modeling in general insurance: From principles to
practice. Cambridge University Press.

Heckman, P. E., Meyers, G. G., (1983). The calculation of aggregate loss distributions
from claim severity and claim count distributions. In Proceedings of the Casualty
Actuarial Society (Vol. 70, No. 133-134, pp. 49-66). Casualty Actuarial Society.

Hofmann, L., (2022). Approximation Methods for the Total Claim Amount in
Collective Risk Modeling/submitted by Hofmann Louisa.

Hogg, R. V., Klugman, S. A., (2009). Loss distributions. John Wiley & Sons.

Jindrova, P., Pacikovd, V., (2016). Modeling of extreme losses in natural disasters.
International Journal of Mathematical Models and Methods in Applied Sciences,
Vol. 10, issue 2016.

Klugman, S. A., Panjer, H. H. and Willmot, G. E., (2012). Loss models: from data to
decisions (Vol. 715). John Wiley & Sons.

Mildenhall, S., (2024). Aggregate: fast, accurate, and flexible approximation of
compound probability distributions. Annals of Actuarial Science, pp. 1-40.

Mildenhall, S. J., Major, J. A., (2022). Pricing insurance risk: Theory and practice. John
Wiley & Sons.

Pacakova, V., Gogola, J., (2013). Pareto Distribution in Insurance and Reinsurance.
In Conference proceedings from 9th International Scientific Conference Financial
Management of Firms and Financial Institutions, VSB Ostrava, pp. 298-306.

Packova, V., Brebera, D., (2015). Loss distributions in insurance risk management.
Recent advances in economics and business administration, pp. 17-22.

Panjer, H. H., (1981). Recursive evaluation of a family of compound distributions.
ASTIN Bulletin: The Journal of the IAA, 12(1), pp. 22-26.



122 Friday I. Agu: The truncated Schroter recursive algorithm...

Qiu, D., (2019). Individual claims reserving: Using machine learning methods
(Doctoral dissertation, Concordia University).

Schréter, K. J., (1990). On a family of counting distributions and recursions for related
compound distributions. Scandinavian Actuarial Journal, 1990(2-3), pp. 161-175.

Sundt, B., Vernic, R., (2009). Recursions for convolutions and compound distributions
with insurance applications. Springer Science ¢ Business Media.

Tzaninis, S. M., Bozikas, A., (2024). Extensions of Panjer's recursion for mixed com-
pound distributions. arXiv preprint arXiv:2406.17726.

Yartey, E., (2020). The (a, b, r) class of discrete distributions with applications (Doctoral
dissertation, Laurentian University of Sudbury).



	The truncated Schröter recursive algorithm for the computation  of aggregate claim amounts

